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For two simple models we consider the analytic continuation of  the free energy 
across a first-order phase transition. For each system we also study an associated 
stochastic dynamics and decay rates for passage to the stable equilibrium. We then 
investigate the relation between the imaginary part of  the free energy and the decay 
rate per unit volume. 
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1. I N T R O D U C T I O N  

That an analytic continuation of the free energy has something to do with 
metastable states is an idea one encounters with his very first acquaintance 
with the van der Waals equations of state. For  more realistic models (i.e., with 
short-range forces) one believes that the free energy acquires an imaginary 
part in the metastable domain, and a natural interpretation of this imaginary 
part is as a decay rate. (Why this interpretation is "na tura l"  probably has to 
do with familiarity with the formalism of quantum mechanics. There a 
negative imaginary part for the energy leads to decay.) 

In this paper we consider some models whose free energy can be 
analytically continued and to which we can also assign a stochastic dynamics 
and deduce a decay rate. We find that near the transition point the imaginary 
part of the continued free energy is proportional to the decay rate with a 
proportionality factor given by Langer (1) in his work on metastability. 
Consequently, o u r  models, though highly simplified, are able to provide 
rigorous examples of a relation between analytic continuation and metastable 
decay rates. 
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By working with solvable models we are also able to see the interplay of 
infinite-volume limits, vanishing lifetimes, and continued free energies for 
metastable systems. 

One of the models considered in this paper, the Curie-Weiss model, 
involves discrete spins all interacting with each other. A stochastic dynamics 
for this model has been considered before/2) We provide a rigorous upper 
bound on the decay rate in the metastable region and exact infinite-volume 
limits for the decay rate per unit volume in the " t ransp inodal"  region, where 
the external field is too large for a metastable state to persist. Our method can 
also be generalized to a stochastic dynamics where several ~ flips" are 
allowed (see below for details) and our conclusions are not altered. Since one 
of the questions that should be considered when assigning some spin flip 
dynamics to a spin model is the extent to which one's results depend On the 
details of  the dynamics, the fact that one can also handle a slight generaliza- 
tion of the usual dynamics is of  some interest. We also study a one- 
dimensional model whose extreme simplicity makes it useful for the in- 
terpretation of the Curie Weiss model. 

2. M O D E L S  

We consider statistical mechanical systems with the following objects : a 
phase space P, a sequence o f "  finite-volume" Hamiltonians H,  defined on P, a 
fixed reference measure v(dp) on P, a sequence of partition functions 

Z.  = f p e X p ( - f i H . )  v(dp) 

and an infinite-volume free energy 

f :  lim f .  = lim ( -  1~fin) log Z. (1) 
n ~ o o  n--*  ~3 

We also suppose that for each n there is a stochastic process defined with state 
space P which defines the (random) dynamics of  the system in such a way that 
e x p ( - f i l l . )  v(dp)/Z,, is the unique invariant (initial) probability distribution 
for the process. The n dependence of the time scale for this process is chosen so 
that the relaxation time has a finite, nonzero limit as n ---, oo corresponding to 
the infinite-volume relaxation time. 

Suppose H.  depends on a parameter  h and the system undergoes a first- 
order phase transition as h passes through some value (say h = O) so that 
metastability can occur. Our interest is in discussing the relation between two 
distinct views of metastability: one in terms of the analytic continuation 
properties of  f around h --- O; the other in terms of the existence of initial 
distributions on P which have anomalously large (n-dependent) lifetimes 
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before decaying by the random dynamics to the equilibrium distribution 
exp( -  f i l l , )  v (dp) /Z , .  In particular, we are interested in whether and how the 
metastable lifetime defined by the stochastic dynamics is related to the 
imaginary part of the analytic continuation off(h) .  

The following systems are of the above type. 

A. Nearest Neighbor, d-Dimensional, Spin- l /2  Ising Model 

In this model 

P={~ri :  i = ( i  1 ..... id) e~_ d, a i = _ I }  

v = [ I  [6(ai + 1) + 6(~ i - 1)] 
i 

" .  =-J  E E Y 
ieBn j~]lj-i]] = 1 ieBn 

where 

(2) 

B, = { i =  ( i l , . . . , id)  a7/d: Ii, I ~< (�89 TM, l =  1 ..... d} 

is the cube of volume n in 7/d and Ili]l denotes the Euclidean length of i. 

S. 

For this model 

Curie-Weiss, Spin- l /2  Ising Model 

P : { t 7 i :  i E Z + ,  i f i : _ _ l }  

v = I-I [3(ai + 1) + 6(a i - 1)] 
( 3 )  

= a i  - h O" i 
H. - 2 n  i i=1 

In both of the above examples, the stochastic process (for given n) is the usual 
stochastic "spin flip" dynamics (related to H.) for the {ai: i ~ B.} or {ai: i 
= 1 ..... n} (see Refs. 2-4). 

The next model is the simplest. It may be thought of as an approximation 
to the Curie-Weiss model above since by a standard Gaussian transform trick 
the Curie-Weiss partition function can be expressed as 

Z n = ( " / 2 g ~ )  1/2 f e  -"a{y' dy (4) 

where A ( y )  = (y - flh)2/2fl - log cosh y - log 2. For small y,  A ( y )  g y4/12 
+ yZ(1/fl  - 1)/2 - yh  + flhZ/2. 
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C. O n e - D i m e n s i o n a l  Mode l  

Here  P = ~ = {x: - o o  < x < oo), v(dp) = dx, and H, = nG(x), with 
G(x) = x4/12 - x 2 / 2  - hx. For  simplicity, we set/3 = 1 in this example.  An 
appropr ia te  dynamics  for  this model  is the (one-dimensional)  diffusion 
process X(t) whose F o k k e r - P l a n c k  equat ion for the probabi l i ty  density at 
t ime t, g(x,  t), is 

6~t 9(x '  t) = e, -0~ 2 g(x,  t) + n ~x [G'(x)g(x, t)] (5) 

where ~, is an n-dependent  t ime scale to be chosen so tha t  the equil ibrium 
relaxat ion t ime has a finite nonzero  limit as n ~ oo. In  some of  the discussion 
below, we also let G depend on n through its dependence on h. 

We now turn to a detailed analysis of  the last two models.  

3. T H E  O N E - D I M E N S I O N A L  M O D E L  

Analyticity propert ies  o f f ( h )  in the one-dimensional  model  are easily 
determined.  For  real h, we have 

f (h )  = min (x4/12 - x2/2 - hx) 
- -  oo  < x - <  oo  

There  is a phase  t ransi t ion at h = 0 evidenced by a discontinuity in f '  : 

(6) 

f +  (h) = rain(x4/12 - x 2 / 2  - hx), h > 0 

f x>o (7) 
f (h )  = ~ f - ( h )  min(x4/12 x2/2 - hx),  h < 0 

x < 0  

N o w  f +  (h) is analytic for  Re h > 0 and has an analytic cont inuat ion  [which 
differs f rom f _  (h)] into the left ha l f  plane,  Re h ~< 0. The first singularity in the 
left half-plane occurs as a square root  branch  point  a long the negative real axis 
at the spinodal  value h = - 2 / 3 .  The na tura l  analytic cont inuat ion  past  this 
b ranch  point  places a branch  cut a long ( -  oo, - 2 / 3 )  a n d f t h e n  develops an 
imaginary  par t  a long this branch  cut. Fo r  h E ( - 2/3, oo),f+ (h) is still given by 
the formula  above,  while for  other  values of  h, one picks the appropr ia te  roo t  
~+(h) of  

x3/3 - x - h = 0 (8) 

and then defines f+ (h )  = (~+)4/12 - ( x + ) 2 / 2  - h x + .  We note  that  for h = 
-2/3 - z we have asymptot ical ly  that  

I Imf+(h)l  ~ const  x z ~/3 as z - ~  oo 
O) 

[Imf+(h)[ ~ c o n s t  x z 3/2 as z---~0 + 
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In order to compare IImf(h)l  to a metastable decay rate on the related 
stochastic process, we first suggest that it must be related to a decay rate "per  
unit volume."  That  is, if 3. is the metastable lifetime for the "vo lume"  n 
process and r. = 1/z. is its decay rate, then in the region o fh  values for which 
Im f (h)  is nonzero we should expect r./n to have a finite, nonzero limit which is 
(perhaps) related to lira f+  (h)l. This point will be discussed below in some 
detail, but for the time being we simply observe that in a more realistic system 
(such as the nearest neighbor Ising model) one knows tha t f (h)  [and thus the 
putative f+  (h)] is a free energy per unit volume and thus its imaginary part  
should be a "decay rate density" rather than a total decay rate. Moreover,  one 
believes that in the thermodynamic limit for a short-range interaction model, 
the metastable decay rate is the same as the rate for forming critical droplets, 
which should be a finite rate per unit volume but infinite for the total (infinite) 
volume in the thermodynamic limit. Our object then in our one-dimensional 
model is to define the metastable decay rate r., to show that rn/n has a finite, 
nonzero limit [in the region where I m f +  (h) # 0], and to determine whether 
that limit is related to ]Im f+ (h)]. 

We first determine the n dependence of e.. Let K.  be the Fokker-Planck 
generator - O/Ox 2 - n(O/~x)G'(x); in the region h < 0, we do various scaling 
transformations about  the stable minimum of  G(x) located at some negative 
value x s = xs(h). This will yield the asymptotics of  the relaxation rate to 
equilibrium associated with small deviations from the stable minimum. 

Letting u = (x - x~)x/n, we see that 

' G ) ] (  - K .  - Cu + 0 --~ C u (10) n c~u 2 0u 0u 2 

Thus K./n has a finite, nonzero limit as n ~ oo in the rescaled variable u, and 
we therefore choose e. = 1/n. 

For - 2 / 3  < h < 0, the metastable decay rate can be defined in analogy 
with the critical droplet formation rate in a more realistic model as follows. 
We let x,. = x,.(h) be the location of the local minimum of G(x) (located at xm 
> 0) and x a = xa(h) be the location of the local maximum of G(x) [located in 
(x~, xm)], and define for the stochastic process X(t) and any initial position 
X(0)  = x > x~, 

V(x, t) = Prob(X(t ' )  # xa Vt' e [0, t] IX(0) = x) (11) 

It is known from the theory of diffusion processes (e.g., see Ref. 5) that V(x, t) 
is the solution of the following partial differential equation with a Dirichlet 
boundary condition at x = Xa: 

Ot e. ~x 2 - r i G ' ( x )  V; t > O ,  x ~ ( x  a,oo) (12) 

V(x,  O) = 1, x ~ (xa, oo);  V(xa, t) = O, t > 0 
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Thus,  by expanding V(x, t) in an eigenfunction expansion, it is clear that  for 
any x > x d, V(x, t) ~ e x p ( - r . t ) ,  where 

r. = min imum eigenvalue of  J .  

where 

J .  ~- ,Sn[--(~2/~X 2 ~- nG'(x) 8/c3x] on (xa, oo) 

with a Dirichlet boundary  condit ion at x = x d. Clearly r. is a reasonable 
definition for the metastable decay rate. 

For  h ~<-2 /3 ,  the definition of  a reasonable r. is somewhat  more  
complicated since the local maximum for G(x) no longer exists. Before 
resolving this point,  we discuss the n dependence of  r. in the region - 2/3 < h 
< 0. N o w  J .  is self-adjoint on 

ogg ~ = LZ{(xa, oo), e x p [ - n G ( x ) ]  dx} 

and is unitarily equivalent to the Schr6dinger operator  

J.  = e. - ~ 5 x  z + ~ [G ' (x ) ]  2 - ~ G"(x) on L2[(xd,  oo), dx] 

with a Dirichlet boundary  condit ion at x~. A s tandard W K B  approximat ion 
suggests then that 

_ _  / ' / E n  r. 4 x / ~  [ -  G"(xa)G"(xm)] 1/2 exp{n[G(x,.) - G(xe)]} (13) 

and thus that r. ~ e x p ( - h A ) ,  where A = G(xd) -- G(x,~) > 0. Thus r./n goes 
rapidly to zero, which is consistent with that  fact that  I m f +  (h) = 0 for - 2/3 
< h < 0 since f+  is analytic for h > - 2 / 3 .  

We now treat the situation for h ~< - 2/3 since (somewhat paradoxically) 
this t ranspinodal  region for our one-dimensional  (as for a Curie-Weiss)  
model seems closer to the conjectured situation in a nearest neighbor Ising 
model for h slightly negative. There are now no longer any clearly defined 
values of  x,. and x~, so we consider more  generally for x' < x 

V(x, x', t) = Prob(X(/ ' )  :P x' Vt' e [0, t] [ X(0) -- x) (14) 

The decay rate for making a transition f rom x to x' is then the rate cons tam in 
the asymptot ic  decay of  V(x, x', t): 

r.(x, x') = - lim(1/t) log V(x, x', t) (15) 
t---~ oO 

For  h slightly less than - 2/3, we expect that  if we choose x' appropriately,  
then r./n will have a nonzero,  finite limit which will be independent  o f  x and x' 
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and this limit will define the ("infinite volume ") metastable decay rate ("per  
unit volume "). 

F r o m  the discussion above we see that  r,(x, x') is the min imum 
eigenvalue o f  

J,(x') = z, -?-Xy + ~ G'(x) - ~ G"(x) on L2((x ', co), dx) (16) 

with a Dirichlet boundary  condit ion at x = x',  so that,  with e, = l/n, 
r,(x, x')/n is the min imum eigenvalue o f  

.~(x') = ~ -~s 2 + G'(x) - ~ G"(x) 

with a Dirichlet bounda ry  condi t ion at x = x'.  
Clearly, as n - ~  ~ ,  we have 

on L2((x ', ~ ) ,  dx) (17) 

r . ( x ,  x')/n ~ inf �88 2 = inf ~txul/l" 3 - -  U - -  h )  ~ / ' ( x ' )  ( 1 8 )  
x '  < u <  oo x '  < u <  oo 

For  h >~ - 2 / 3  and x' <~ xm(h), w e  have [-as discussed above for x'  = xn(h)] that  
r(x') = 0 since by definition G'(u) = 0 for u = x,,(h). On the other  hand,  for h 
< - 2/3 and x'  > xs(h), we have r(x') > 0, since now the only real zero o f  G'(u) 
is at u = xs(h ). In order  to have r(x') independent  o f  x '  we need that [G'(u)] 2 
attain its min imum on [x ' ,  ~ )  in the interior o f  the interval. This interior 
min imum clearly occurs at u = + 1. Thus we must  have x'  < 1 and further we 
must  have [G'(x ' ) ]  2 > [G'(1)] 2, which is easily seen to imply that  x '  > - 2 .  
Thus for - 2  < x'  < 1 we find 

r.(x,x')/n---, r(x') = inf l [G ' (u)]2  = �88 2 = � 8 8  - 2)2 (19) 
x ' < u <  c~ 

so that  the metastable decay rate per unit volume for h = 2 _ z is a well- 
defined function o f  h, say ~(h), independent  o f  x', and 

~(h)  = ~ ( - }  - z )  = �88 z (20)  

According to Ref. 1, the decay rate 7(h) and the quant i ty  rim f +  (h)[ given in 
Eq. (9) are not  identical, but  differ by a factor  " k a p p a "  (in Langer ' s  notat ion).  
In our  model  this factor  (up to constants)  is G" evaluated at the local 
max imum of  G in the metastable range o f  h; t ranspinodally,  where G has no 
such local max imum,  we analytically cont inue and evaluate G" at the 

appropr ia te  roo t  2 o f  Eq. (8). Since [G"(2)I = 2 x / z  + O(z), we see that  7(h) and 
IG"(2)] I m f +  (h) have the same h dependence,  confirming the expectations o f  
Ref. 1 (see also Refs. 6 and 7). Note  that  agreement  obtains only to leading 
order  in z. 
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There is some further evidence that can be obtained from our simple one- 
dimensional model linking the nonvanishing imaginary part  of the free energy 
and the nonvanishing of the metastable decay rate. We first note that the 
analytic continuation of the free energy can be obtained by doing a change of 
contour in the complex x-plane in the integral defining Z, .  Namely, if we let C 
denote a contour which comes in from the upper half plane (say, along the 
positive imaginary axis), meets the real axis at xd(h), and then leaves along the 
positive real axis, then for Im h > 0 

f+(h)  = lim ( -  l /n) log ["  e -nG~Z) dz (21) 
n - *  ct3 Jc 

This is the point of  view of Refs. 6 and 8. Thus it is natural to define for finite n, 

1 log i e-"G(z) dz 
n +  - -  n 

We next consider the situation when G(z) = G.(z) with h = h. ~ - (~)+ in an 
appropriate way so that Im nf.+ has a finite, nonzero limit (of course, both of  
the corresponding densities vanish). By scaling arguments, one has that if z. 
= 1 + wn -1/3 and h = - ~  + On -2/3, then 

and thus 

n[G.(z.)  - G(1)] ~ �89 3 - Ow = B(w) 

Im nf.+ = - - a r g  ~ce-"G(Z.~ dz.---, arg f c  e ~O~) dw (22) 

where C '  is an appropriate contour coming in from the upper half plane (say 
along the ray arg w = 2rc/3) and leaving along the positive real axis. On the 
other hand, we have a total metastable lifetime r.(x,.(h.), xe(h.)), the minimum 
eigenvalue of J .  = t ? , n [ - - ( ~ 2 / ~ X 2 - t  - nG.'(x)~?/~?x] with Dirichlet boundary 
condition at x ' =  xa(h.). By a similar scaling argument we find that if we 
choose e. = n -2/3, then 

r. ~ minimum eigenvalue of J 

where 

j = - c32/~3w 2 + B'(w) Q/~3w (23) 

with a Dirichlet boundary condition at wd(O) = [location of local maximum of 

B(w)] = - .,/~. The reason s, is taken proport ional  to n-  2:,3 rather than n 1 is 
because we choose the time scale so that the metastable (rather than the stable) 
relaxation time has a finite, nonzero limit. This is necessary because x,,(h,) 
- Xd(h,, ) --, 0 in this case. 



Complex Free Energies and Metastable Lifetimes 139 

To compare (22) and (23), consider the situation for 0 >> 1. Applied to the 
right-hand side of  (22), the method of stationary phase gives 

!im]Im nf,+ [ ~ i exp(--340 3 / 2 )  (24) 

Note that the quantity in the exponent is just B(x/-0 ) - B ( -  xf0), where _+ x/0 
are the locations of the minimum and maximum of B. On the other hand, r, 
can be estimated by WKB methods as in Eq. (13), yielding 

lim r, ~ 21 (0/7~) 1/2 exp(--~0 3/2) (25) 

To compare (24) and (25) we again require the factor " k a p p a "  of Ref. 1, here 
simply equal to B" evaluated at the local maximum. This is seen to be 

B"( - x/0) = - 2x/0, and we find that the two methods agree not only on the 
dominant exponential behavior, but on finer details (the 0 dependence of the 
"prefac tor")  as well. 

4 .  C U R I E - W E I S S  M O D E L  

The Hamiltonian of Eq. (3) can be written 

H, = U(k) = - ( 2 k  - n)Z/2n - h(2k - n) (26) 

with k the number of spins pointing " u p "  (a i = 1). It is also convenient to 
define the magnetization per unit volume x = ~i affn = (2k/n) - 1. In equilib- 
rium the probability of finding k spins up is 

/ n \  
p ( k ) =  Z f f l ~ k ) e x p [ - f l U ( k ) ] : - z f f l  exp[-[3na,(x)] (27) 

with Z,  the partition function 

and T = l/ft. By Laplace's method 

- 1  n 
f(h) = l i m ~ - l o g k _ ~  ~ e -~'a'(x' 

- 1  n f l  dx e -~'a(x)= min 
= lim f i n  log ~ 1 1 ~< x ~< 1 

a ( X )  (29) 

with a(x) the limit of a,(x) as n --~ Go. The function a(x) is 

(l+x. l+x 1-x 12x ) lx~ 
a(x) = T 2 2 l o g ~ - - +  l o g - -  - - h x  (30) 
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[It  can also be shown that the minimum of a and the minimum o fA of Eq. (4) 
give the same free energy.] The value of x at which a attains its minimum 
satisfies a ' ( 2 ) =  0 and as in the one-dimensional model the analytic con- 
tinuation of f is obtained by evaluating f a t  (possibly complex) points 2 even 
when such points do not yield the absolute minimum of f .  For h > 0 we start 
from the largest positive root of a'(2)  = 0, this 2 being the magnetization in 
the stable state. Continuing to h < 0 when T < 1, the imaginary part  of  the 
continued free energy is zero so long as a'(2) has a real, positive root. 2 
becomes complex past the spinodal value of h 

hsp = - ( 1  - T)  1/2 + T t a n h - l ( 1  - T )  1 /2  (31) 

For h n e a r  h s p  the behavior of  a and thereforef is  to leading order the same as 
derived above for the one-dimensional model. It is thus easy to show that 

I lmf l  ~ Ih - hspl 3/2, h < hsp < 0, 

For h ~ oo we find 2 ~ - h  +_ #c/2fl and 

[Imf[  = hzc/2fl, h --, - oe, 

Ih - hsp[  small (32) 

h real (33) 

Because for h ~ -  oe, Re 2 ~ - h  >> 1 the magnetization is far from any 
possible physical value and one does not expect I m f  to have much 
significance. 

There is a well-studied stochastic evolution associated with the Curie-  
Weiss model. Because the energy depends only on the total number of up 
spins, the spin flip dynamics becomes a Markov chain on the integers 0, 1 .... , n 
with the following transition probabilities (see Ref. 2): 

Tkk+l, = (z  n exp - ~ f l [ g ( k  + 1) - U(k)] for 0 ~< k ~< n - 1 (34) 

Tkk l = c ~ - - e x p  -- f [ U ( k - 1 ) - U ( k ) ]  for l~<k-%<n (35) 
' /'1 

Tg k = 1 - Tg,k+ 1 -- Tk,k_ 1 for 0 ~< k ~< n (36) 

where Tij is the probability for going from i spins up to j  spins up and c( is small 
enough for Tj~ to be positive for allj .  All T/j not given by (34~(36) are zero. 
Time units are chosen so that n steps (or spin flip attempts) are taken per 
second. I fp(k,  z) is the probability of finding the system with k spins up after z 
steps (and therefore at time z/n), the master equation is 

p(k ,  ~ + 1) = ~ p ( j ,  ~)Tik (37) 
j = 0  

The lifetime of the metastable state of  this system has been studied by 
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Griffiths eta/. (2) by going over (to some extent) to the continuum limits of k 
and t. They themselves point out the hazards of this procedure. The problem is 
the rapid variation ofp  with k. In particular, to get a Fokker-Planck equation 
from (37) one would like to consider a probability function 

P(x, t) = p(�89 + x), nt) 

and expand P in a series 

= - + \ i )  +. . .  P X + n , t  = p ( k +  1, nt) P(x, t )+~xx n 

However, derivatives of P with respect to x are themselves of  the order of n 
[compare the equilibrium distribution, Eq. (27)], so that successive terms in 
the series do not obviously decrease. For  this reason we shall do all our 
calculations on the discrete system, providing a rigorous bound on the decay 
rate for Ihl < ]hspl and obtaining the exact n dependence of the decay rate in the 
transpinodal region. 

As above, we define lifetime in terms of first passage time. For  some fixed 
L let Lv(j, k, r) be the probability that after r steps a system has k spins up, 
given that it initially h a d j  spins up, and with the additional condition that at 
no time r' (0 ~ v' ~< r) did it have exactly L spins up (/, k > L) (L is a taboo 
state in the language of Ref. 9). To study LV(1 ", k, r) we define a modified 
transition matrix. Let iPab be the same as T,b except for two elements. These 
two elements are 

TL,L+, = 0 (38) 

TLL ~" 1 - -  T L , L - I  = TLL -It TL ,L+ I  (39) 

ir is a stochastic matrix. Under i~ a system reaching the state L can never go 
back to L + 1. It follows that 

Lv(j,k, r + 1) = ~ Lv(j,i,z)Tik (40) 
I = L + I  

with the initial condition LV(J', k, O) = 6jR. The total probability of not having 
undergone a first passage through L by step z is just Lv(j, z), the sum over k (L 
+ 1 ~< k ~ n) of Lv(j,k,z). 

The similarity of  Eq. (40) to the continuum version of  the first passage 
problem, namely Eq. (12), is evident. It is thus clear that the asymptotic decay 
properties of a system confined to L < k ~< n are given by the largest 
eigenvalue of the J x J matrix 

YU = T n - j + l , . - i + l ,  i , j  = 1,. . . ,J;  J = n - L (41) 

Calling this eigenvalue 2, and recalling that there are n spin flip attempts per 
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with 

second, we have that 2" = e x p ( -  F), with F the decay rate. The decay rate per 
unit volume is therefore 

F/n = - log 2 (42) 

The matrix Y is not a stochastic matrix, because the sum of the elements 
in its J th  column do not add to unity; in fact 

YJJ = TL§ = I -- TL+I, L -- TL+I,L+ 2 

Y+-I,J = L + I , L + 2  =~" T L + I , L + 2  

with no other nonzero entries in column J. The matrix 

(Y~ = Yij + TL+ 1,L(~Ji~j+ (43) 

is stochastic. Because y0 is stochastic, its largest eigenvalue is 1. Since yO _ y 
is a nonnegative diagonal matrix, the largest eigenvalue of  Yis equal to or less 
than one. Furthermore, by the Frobenius theorem, 2, the largest eigenvalue of 
Y, is nondegenerate and the associated eigenvector has all positive entries (we 
also use the fact that Y is irreducible : every state can be reached from every 
other state). 

Although Yis not Hermitian, the detailed balance condition built into Ty 
ensures that Yis unitarily equivalent to a Hermitian matrix X (just as J ,  and J ,  
were related in Section 3). Specifically, let 

S = diag([p(n)] -1/2, [p(n - 1)]-~/2,..., [p(L + 1)] -~/2) 

[with p(j) given by (27)] be a diagonal J x J matrix and let 

X = S YS- ~ (44) 

Then X is Hermitian and for any vector 4 

2(4, 4)/> (3, Xr (45) 

J 

j = l  

A bound on F similar to the estimate given in Ref. 2, but which makes no 
appeal to a continuum approximation to the master equation, can be 
immediately obtained from (45). Let 

( P(n)'/2 ) 
(46) 

= \ p ( L  + 1)1/21 
Then (45) yields 

2 p(j) >1 ~ p(j) - p ( L  + 1)TL+I,  L (47) 
j ~ L + I  j = L + I  
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We have the r igorous  bound  

1 - 2 <~p(L + 1)TL+I, L p U )  
~ j = L +  1 

= ~ L e-~[v~L) + U(L+ 1)1/2 E e -  ~v(j) (48) 
/ / j = L +  1 

For  0 > h > hsp , a(x) has a m in imum at some ;~ > 0 and we take L such that  xL 
< Y. Then Stirling's approx ima t ion  and the Laplace  me thod  for  integrals 
yield 

F = O(exp{ - fln[a(xL) - a(X)]}) (49) 

The constant  implicit  in the asympto t ic  relation is also easy to evaluate.  
Equa t ion  (49) establishes that  for [hi < [hsp 1, lim,~o~(F/n) is zero, in 

conformi ty  with the vanishing of  the imaginary  par t  o f f .  
In the t ranspinodal  region (h < hsp < 0) a more  useful bound  is obta ined 

by letting ~ [o f  Eq. (45)] be ~i = 1 for i = v I ..... v2 - 1 and zero otherwise, 
with v = v2 - Vl >> 1. Then by (45) 

v2-  1 

2v>~ ~ (Xj,j_ 1 + X j j + X j , j + a ) +  O(1) 
j=v l  

the 0(1)  terms being of  the fo rm X~l 1,~1 arising f rom the edges of  the sum. It  
follows that  

(1/a)~1 - min ( X j , j _  1 At- X j j  + X j , j +  1) ~- O(1/v)~ (50) (1 2)/~ ~< 
L vl~<j<v2 ) 

Fo r  large v, (50) can be replaced by its con t inuum version [-with O(1/n) 
< O(1/v) = o(1) errors]  to yield 

lim(1/~)(1 - 2) ~< max  �89 z (51) 
rt~ ~X~ XI ~X~X2 

with Xx and x2 cor responding  to v 2 and v~, respectively, and 

~(x)  - (1 + x) 1/2 e x p [ - � 8 9  + h)] - (1 - x) 1/2 exp[l f l (x  + h)] (52) 

Since Xx and x z are arb i t ra ry  points  to the right o f  xL, we minimize (51) over  
choices of  x l ,  x2, obta ining 

lim (1/~)(1 - 2) ~< min �89 2 (53) 

We next develop an upper  bound  for 2. 
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Consider a matrix of the form 

a 2 b 2 O 
H 1 = . b M 

b~_,  " a ~  / 

(54) 

with ai real and b~ ~> 0 and define bo = bM = 0. If  the largest eigenvalue of H~ is 
2, then from 

M 

(x, H,x) = Y~ (55) 
i = 1  

it is obvious that 

and thus 

M - 1  

Ixil2(ai + bi + h i - l )  - E bilxi+l - xi[ 2 
i = 1  

(x'Hlx)<~Imax(ai+bi+b~a<~i~M 1)~ ~[x~]2 

2 ~< max (ai + bi q'- bi -1)  
l ~ i ~ M  

Now return to the matrix X o f  Eq. (44). The matrix Xis of the form H x of 
Eq. (54), so that we have the rigorous bound for 2 

2 <<. max(Xi i  + 2Xi,i+l) (56) 
i 

For i = J the term 2Xi,i+ 1 is replaced by X i_ 1,i in (56). Taking the continuum 
limit of this inequality gives 

( l /a)(1  - 2) ~> �89 min[~O(x)] 2 + O(1/n) 
X ~ X L  

[the same q* as Eq. (52)]. Equations (53) and (57) yield the result 

(57) 

lim (l/a)(1 - 2) = �89 min[~9(x)] 2 (58) 
~1~oo X ~ X L  

The properties of ~ are related to those of a, When a' = 0, ~b = 0 and 
simultaneous vanishing o f ~  and ~' occurs for h = h~p. For h near h~p (<.0) and 
at that x (>0 )  such that ~' = 0, Eq, (58) gives 

(l/a)(1 - 2) = �89 - h~p) 2 (59) 

The resemblance of (59) to (20) is not accidental, as many of our discrete 
process arguments have continuum analogs. The relation between the decay 
rate (59) and the imaginary part of the continued free energy (32) (for small 
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]h - h~p]) is the same as that obtained above for the "one-dimensional" model, 
namely they differ by a factor ]h - hsp] 1/z.  Again, as shown explicitly above, 
the second derivative of the "potent ia l"  a(x)  at its continued extremum 
provides this factor. 

The foregoing results can be generalized to dynamical systems in which 
two or more spin flips can occur in a single time step, i.e., the transition 
probabilities Tk,~+ j are nonzero for j > 1. A form consistent with detailed 
balance is 

Tk,k + j = o~j[ (n -- k )(n - k - 1)" - (n  - k - j  + 1)/n J] 

• 1 8 9  for 0~<k, k + j ~ < n  

Tk,k_ j = ~j[(k + 1)"'" (k + j ) / n  j] (60) 

• 1 8 9  U(k)]} for 0 ~ < k - j ,  k~<n 

Tkk = I - -  ~, (Tk,k+ j +  Tk,k_ fl  for 0~<k~<n 
j>~l 

Using this T, the matrix X is defined as above and 

lim(1 - 2) = lira min ~ (Tk,k+ J + Tk,k-~ -- 2Xk,k+j) 
k j>~l 

For example, if the ctj have a Poisson distribution form 

~j = O~oe-PpJ/j!, p > O, j >1 0 

then 

with 

lim[(1 - 2)/%] = min e-P(e  puz/2 -- 2e puv/2 + e ~ 

U ----- (1 q'- x)U2e -p(x+h)/2, V = (1 - x)l/2e ~(x+h)/2 

The dependence of  1 - 2  on h - h s p  given in (59) is not affected by this 
generalization, although the coefficient multiplying the ( h -  hsp) 2 term is 
changed. This result is of some interest, since one of  the questions our work 
raises is the extent to which our conclusions depend on the specific dynamical 
model. Another point is that our discrete methods allow easy and rigorous 
generalizations to various dynamics such as those of  Eq. (60). 

We remark finally that there is a continuous-time stochastic dynamics 
closely related to the discrete-time process defined by (34)-(36), in which (37) 
is replaced by 

d k = p(  , t) ~ P(J, t)[Tjk (~jk] 
j = O  
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It is easy to show that our discrete-time analysis of the decay rate implies that 
in the continuous-time context we also have 

F/n -* �89 min [O(x)] 2 
X>~XL 

5. C O N C L U S I O N S  

We know no a priori reason for the imaginary part of the analytically 
continued free energy to be proportional to the decay rate for a metastable 
state, although the analogy to quantum mechanics makes the idea plausible, 
Within the droplet model, however, Langer calculated both the analytic 
continuation (6) and the decay rate ~8'1) and found them to differ only in a 
factor ( "kappa")  which is a property of the saddle point in free energy 
through which the system passes on its way to the stable state. In this paper we 
have provided rigorous verification of his results in some simple models. It 
must be said, though, that the need to identify the factor " k a p p a "  detracts 
from the generality of  the results. While we did not need to invoke a droplet 
model, we nevertheless had to identify a potential in order to evaluate 
" k a p p a " - - i t  would have been preferable if the factor had emerged as a 
property of the stochastic process or of the free energy continuation. 

With the factor "kappa ,"  agreement holds to leading order near the 
singularity (hsp), but not necessarily away from there. We can show, however, 
in the case of the Curie-Weiss model that the agreement is to some extent 
independent of  the details of the spin flip dynamics. Specifically, our method 
allows calculation of decay rates in the case of many simultaneous spin flips, 
and agreement persists. 

Our model systems illustrate another phenomenon that occurs in realistic 
metastable behavior. No matter how close 2 (the largest eigenvalue of the 
restriction of iP) is to one, so long as lim,_~ o~ 2 < 1 the lifetime of the system 
as a whole [ ~ - 1/(n log 2)] goes to zero. On the other hand, the time needed 
to go from xj to x L cannot be less than (x~ - xL)/2 [equal n(xi  - xL)/2 steps 
divided by n steps per second], so that for sufficiently large n the eigenvalue 2 
(which remains perfectly well defined) ceases to govern the system's evolu- 
tion. [Mathematically, if a spectral decomposition of T is inserted in (40), 
a relatively long time will elapse before the largest eigenvalue dominates the 
sum.] It follows that for any h there is some n beyond which the metastable 
state (or decay bottleneck) ceases to dominate the relaxation. 

What is happening is that there are several time scales in the problem and 
they do not all have the same n dependence. These scales are: (1) microscopic 

[Ax = O(1/x/~)] fluctuations about the stable state [our demand that this 
time be 0(1) fixed e, above], (2) microscopic fluctuations about the metastable 
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state (if there is one), (3) escape from the metastable state (critical droplets, 
free energy barriers, etc.), (4) macroscopic changes in the system [Ax = 0(1)]. 
If the macroscopic relaxation takes places on the same time scale as 
microscopic fluctuations (time scale 1) (as it does in our models), 4 then 
macroscopic relaxation will appear to be deterministic. In our one- 
dimensional model, for example, the system heads toward x s with a definite 
drift velocity. Looked at in this way, the point xm simply represents a 
minimum in the drift velocity. Of  course for any finite n, an h can be chosen 
close enough t o  hsp (but [hi > [//sp[, SO that the system spends a long time at x m. 
But with increasing n the metastable escape time scale (time scale 2) must 
become less than that of macroscopic relaxation. 

In this respect our models reflect the behavior of more realistic systems. 
Consider, for example, the two-dimensional Ising model. The imaginary part 
of the free energy or the largest eigenvalue of the truncated master equation 
may be perfectly well-defined quantities for n-~  ~ .  Nevertheless, these 
quantities will only convey dynamical information up to a certain system size. 
It seems to us that this may be the best compromise one could hope for in the 
quest for a mathematical idealization of metastability: quantities which are 
well defined in the thermodynamic limit but whose application to large 
systems is limited. Physical or laboratory metastability then occurs because 
the system sizes for which the ordinary (macroscopic, deterministic) re- 
laxation is longer than metastable relaxation are so large, even on the scale of 
1024 constituents, that many macroscopic systems are governed by the 
metastable evolution. We are certainly not the first to enunciate the view that 
metastability, insofar as it is characterized by long lifetimes, is an inherently 
finite system phenomenon; but we believe our simple models show how this is 
not inconsistent with the existence of certain mathematical idealizations 
which are perfectly well defined in the thermodynamic limit (and hence can be 
associated with an ideal concept of the metastable system) but whose use for 
dynamical description is limited by system size. 

An "experimental"  example of the transition from metastable relaxation 
to ordinary relaxation in the Ising model is given by Stoll and Schneider. (11) 
They studied the n dependence of lifetime and found that indeed as system size 
grew the lifetime went from inverse volume dependence to volume inde- 
pendence. 5 At the largest n values they indicate ~la) that critical (and larger) 
droplets form quickly and most of the relaxation is taken up with the linking 
of the droplets, a process we would consider macroscopic deterministic 
relaxation, not related to the phenomenon of metastability, and having 
relaxation time independent of system size. 

4 The coincidence of time scales 1 and 4 would seem to be related to the fluctuation-dissipation 
theorem. 

5 They have a third region of very small volumes, but this does not concern us here. 
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The imprecision implicit in the foregoing " c o m p r o m i s e "  definition o f  
metastability is in some ways analogous to that  which enters the description of  
unstable states or particles in quan tum mechanics. The idealized concept  o f "  a 
pole in the S mat r ix"  is more  or less useful as a characterization o f  an unstable 
state as that  pole is closer or farther f rom the real axis. For  our metastable 
state, a l though there may be a range of  volumes for which good  measurements 
of  the free energy can be made,  one cannot  in principle get arbi t rary accuracy,  
since a sufficiently large volume destroys the metastable state. In the same way 
one can never measure the location of  the pole in the S ma t r ix - -one  can only 
estimate its position more  precisely for poles closer to the axis. In  both  
situations, however,  a l though the quantities are not  directly measurable,  they 
are knowable by analytic continuation,  in one case f rom real energy scattering 
shifts, in the other f rom stable free energies. 
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